
Uncertainty in Geospatial Analyses
The collection and analysis of environmental data, as well as site management decisions made based on these data, are
subject to uncertainty. The most obvious source of uncertainty in geospatial analysis results from the inability to sample
everywhere, which means that a range of potential values exist at unsampled locations. Geospatial methods differ in their
ability to provide quantitative measures of uncertainty for predictions at unsampled locations. This section provides an
overview of the sources of uncertainty resulting from sampling bias and error and from differences in analytical precision.
Information about uncertainty from the use of different geospatial methods is presented in Evaluate Geospatial Method
Accuracy. The sources of uncertainty should be identified and documented; to the extent possible, the effects of uncertainty
should be minimized.
▼Read more
Uncertainty also arises from errors in data collection and modeling, with error being defined as the difference between a true
value in nature and a measured or predicted value (Krivoruchko 2011). Specific examples of error contributing to uncertainty
in the distribution of a parameter of interest include:

Sampling bias and error can result from the collection of samples that are not representative of the spatial and
temporal heterogeneity (the underlying variation) of the media being sampled.
Locational error can result from imprecise measurement of sample collection locations, which is more or less
significant at different study scales.
Error in laboratory or field-based analytical techniques can result from using instruments with different precision.
This type of error includes error caused by variation that is below the detection capability of the sampling
program.
Error can be introduced by interpolation methods themselves, which may be caused by using assumptions that
are not supported by the data, or by characteristics of the interpolation algorithm such as the tendency of
kriging to smooth out spatial variation. The latter example is a form of conditional bias that overestimates small
values and underestimates large values (Goovaerts 1997). Interpolation method performance can be evaluated
through cross-validation, which compares interpolated to measured values to quantify prediction accuracy.

More complex and advanced geospatial methods recognize that there is error in spatial predictions, and attempt to quantify
the resulting uncertainty. At its most basic level, kriging incorporates uncertainty through use of a nugget representing the
white noise variation in the model (sampling error, analytical error, or smaller-scale variation that is below the detection of
the current sampling program). Kriging also provides prediction standard error estimates that can be used to build a
variance map to evaluate uncertainty. Indicator kriging is another way to evaluate uncertainty by generating maps that
depict the probability of exceeding threshold values.
Kriging and certain more complex methods of evaluating uncertainty are inherently limited because they focus on local
uncertainty associated with single estimate locations and because of the smoothing tendency of kriging. Conditional
simulation attempts to better quantify true uncertainty by reconstructing the spatial heterogeneity, or variation, intrinsic to
the environmental system investigated. As a result, simulation better assesses spatial uncertainty as whole, or the joint
uncertainty considering multiple locations taken together. This method is especially useful for data sets with extreme values
and heterogeneity, which is often the case with contaminant concentration data (Goovaerts 1997); see the example of using
conditional simulation to create statistical and probability maps for uncertainty analysis.

Sampling Bias and Error
The quality of the results of any geospatial method depends on the quality of the input data. Often, only one sample is
collected at each borehole and geological layer, which may introduce bias since the collected sample is assumed to be
representative of the entire stratigraphic unit that is being characterized. When sampling for lateral delineation, systematic
grid-based sampling may be used for the initial site characterization. This type of sampling, however, may include some
bias. Figure 11 includes an example of results from systematic grid-based sampling.

https://gro-1.itrcweb.org/evaluate-geospatial-method-accuracy/
https://gro-1.itrcweb.org/evaluate-geospatial-method-accuracy/
https://gro-1.itrcweb.org/uncertainty-in-geospatial-analyses/#sampling_bias_and_error
https://gro-1.itrcweb.org/uncertainty-in-geospatial-analyses/#analytical_precision
https://gro-1.itrcweb.org/evaluate-geospatial-method-accuracy/#validation
https://gro-1.itrcweb.org/quantifying-uncertainty/
https://gro-1.itrcweb.org/quantifying-uncertainty/
https://gro-1.itrcweb.org/advanced-methods/#ordinary_kriging
https://gro-1.itrcweb.org/advanced-methods/#kriging
https://gro-1.itrcweb.org/generate-geospatial-analysis-results/#variance_map
https://gro-1.itrcweb.org/advanced-methods/#indicator_kriging
https://gro-1.itrcweb.org/advanced-methods/#conditional_simulation
https://gro-1.itrcweb.org/advanced-methods/#conditional_simulation
https://gro-1.itrcweb.org/generate-geospatial-analysis-results/#statistical_and_probability_maps


Figure 11. Example of systematic sampling on a 25mx25m grid (left) and possible anisotropy detected along
the sampling direction (right). True anisotropy or sampling effect?

▼Read more
Stratified random sampling can be a good alternative to avoid such biases. This approach provides information about
different spaced samples, which may improve the knowledge of the experimental variogram. Moreover, this strategy allows
some flexibility to resolve the access issues when planning the field investigation. Figure 12 includes examples of systematic
sampling and stratified random sampling.



Figure 12. Example of systematic sampling (top) and stratified random sampling (bottom).
If the goal is to identify potential contamination sources, a sampling approach using a cross or a spiral sampling geometry
can be implemented. Conducting a sampling strategy by drilling closely spaced boreholes improves the understanding of the
contamination and provides better data for fitting the empirical variogram. Figure 13 includes an example of sampling using
a cross geometry approach with sampling locations at the grid crossings (sampling points S1, S2, S3, S15, S17, S19 and S20)
so that there are more closely spaced sampling locations.

Figure 13. Example of sampling by using a cross geometry approach near a contamination source.



When sampling for vertical delineation, collecting samples from each geological unit is a good approach. It is important to
collect samples at different depths in the same geological layer (see Figure 14). This approach provides information about
the attenuation of the contamination at depth.

Figure 14. Example of vertical sampling near a contamination source on a site consisting of three different
geological units.

Often, the delineation of the contamination is less complete in the vertical direction than in the horizontal direction. Using
field-based measurement technologies (for example, mobile lab) during the initial characterization step facilitates the
complete delineation of contaminant sources (USEPA 2003; ITRC 2003; and ITRC 2007). These methods can reduce
uncertainties.
Additional information can be found in the USEPA (2002a) guidance on choosing a sampling design, and the ITRC (2012a)
guidance on incremental sampling methodology.

Analytical Precision
Uncertainty is present in the analytical results obtained from laboratories and should be clearly identified. Similarly, if field-
based measurement technologies are used, the accuracy of each device must be identified. In addition, the analysis carried
out in the laboratory is based on a small fraction of the total sample collected, which is a minimal part of the geological unit
being characterized. This result is then assumed to be representative of the whole geological unit. This bias should be taken
into account when interpreting the final results.
▼Read more
Which analytical results to include in the geospatial modeling should be considered when planning the evaluation. For
example, what samples should be included as representative for a contamination source? Samples with concentrations
slightly below a remediation threshold may or may not be considered part of the contamination source based on their
physical location adjacent to higher concentration results. Also, decisions about concentration results that are below a
laboratory detection limit should be considered. More information about managing nondetect data in statistical analyses is
included in GSMC-1, Section 5.7.
These and other sources of uncertainty are difficult to manage. The strategy for managing sources of uncertainty for a
specific project should be documented so that the geospatial modeling results are more transparent and the impacts of the
uncertainties can be minimized.
USEPA offers additional guidance on this topic (USEPA 2006a; USEPA 2006b; USEPA 2008; USEPA 2011a).
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