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Basic Data Concepts for Geospatial Analysis

Geospatial analyses assume that sample points close to one another are more related than sample points separated by a
greater distance.

Read more

In order to generate useful maps (for example, contaminant contour maps), these methods require that the data exhibit a
spatial or temporal relationship. Depending on the method employed, these relationships are either implicitly understood or
explicitly quantified. Each geospatial method is also unique according to its assumptions. Simple geospatial methods make
no assumptions and are therefore more relaxed in terms of their use and application. More complex and advanced methods
do make statistical assumptions about the data; these assumptions are method specific and vary in their strictness.
Practitioners must have a basic understanding of these assumptions in order to make informed decisions about which
method is best for a given data set. The concepts covered in this section include (1) spatial dependence and autocorrelation;
(2) sampling geospatial data; and (3) advanced geospatial model assumptions.

Spatial Dependence and Autocorrelation

Environmental properties and processes are typically related to one another in space, time, or both, making it possible to
draw meaning out of environmental data. Environmental properties and processes follow Tobler’s First Law of Geography
(Tobler 1970), which states: “Everything is related to everything else, but near things are more related than distant things.”
This law means that sample observations that are collected close together in space or time are more related than sample
observations collected farther apart. In a spatial context, the relationship between sample locations imparts meaning in a
map, whether it is a geologic map or a three-dimensional visualization of a contaminant plume. Sampled data that relate to
one another in space or time are called dependent data.

Read more

Autocorrelation is an explicit measure of the relationship, or correlation, between sampled data in space or time.
Autocorrelation can be an expression of a single data set and illustrate how a sampled property or process relates to itself in
space or time. On another level, autocorrelation can be an expression between multiple data sets (multivariate) and
illustrate how multiple sampled properties or processes relate to one another in space or time; see Sampling Geospatial
Data.

Advanced methods are based on the general assumption that the mean, variance, and autocorrelation properties are
statistically the same over some distance ranging from some limited distance between sample points to the entire site (or
sampling domain). This statistical sameness is termed “stationarity” and is discussed in more detail in Advanced Geospatial
Model Assumptions.

The tools for evaluation of autocorrelation such as the variogram require selection of a value for the lag. The separation
distance between two points, commonly referred to as the lag, is defined by the sampling frequencies (time and number) or
grid spacing (distance and space). Thus, it is important to develop well-designed sampling programs for

assessing autocorrelation. When samples are located on a sampling grid, the grid spacing is usually a good indicator for the
value of the lag. If the data are acquired using an irregular or random sampling scheme, however, the selection of a suitable
lag distance value is more complex. The lag value selected can affect autocorrelation. For example, if the lag value is too
large, then autocorrelation over short distances may be masked. If the lag value is too small, then groups of data points
(called “bins”) will not reflect representative data averages. See Variograms for more information.

Sampling Geospatial Data

To perform geospatial analyses, the sampling program must adequately capture the dependence or autocorrelation of the
properties being sampled. This design is difficult for complex systems, such as groundwater or soil environments.
Consequently, site reconnaissance efforts or phased sampling programs can help to ensure that the right quantity and
quality of data are being sampled. These data are assessed using the geospatial work flow steps. If preliminary analyses of
these data indicate that the data are inadequate, geospatial analysis can be used to optimize sampling to determine
additional sample locations.
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Fundamental concepts for designing a sampling program to collect geospatial data include sample support, sample extent,
and sample interval, which are referred to in some cases as the scale-triplet (Zhang 2011). Sample support is the area or
volume represented by each observation point. Sampling extent is the observation domain or area of study. Sampling
interval is the sampling distance or frequency data are collected.

A project’s sampling design should be based on the typical scales of autocorrelation exhibited by the properties being
sampled. The scales of spatial autocorrelation can be local or regional, and may vary according to sampling interval and
extent. For instance, to interpolate hydraulic conductivity of soil to quantify transport behavior of contaminants, the spatial
sampling interval should be smaller to capture the smaller scale autocorrelation inherent in soil porosity. By comparison, to
model the surface transport of pesticides across an agricultural region, the sampling interval should be relatively larger to
capture regional scale autocorrelation in topographic landforms and agricultural activity affecting the transport of pesticides.
Sampling interval applies to time as well. For example, when monitoring the attenuation of a recalcitrant hydrocarbon in
slow moving groundwater, the temporal sampling interval can be longer than would be selected for hydrocarbons in fast
moving groundwater.

Advanced Geospatial Model Assumptions

The defining feature of advanced geospatial methods is that they are based on an explicit model of spatial autocorrelation.
This model must be estimated from the data. In order for this estimation to be possible, it is assumed that the statistical
properties of the population from which the data are sampled do not change in space (or time). In other words, we must
assume that the mean, variance, and autocorrelation do not vary in space or time (translation invariant). This assumption is
called stationarity.

Advanced geospatial methods are based on the assumption that the observed data are a realization (or possible outcome) of
an autocorrelated random variable. The assumption of stationarity applies to this random variable that is the basis of the
advanced methods. This section describes types of stationarity as they relate to the use of advanced geospatial methods.
These concepts are key for helping practitioners decide whether stationary or nonstationary advanced geospatial methods
apply.

Stationarity -The assumption that the statistical properties of the population do not change over time or space. There are
several types of stationarity depending on which statistical properties are assumed to be invariant over time and space.
Stationarity is an important assumption for advanced geospatial methods because it allows data from different locations or
times to be combined together to estimate an overall model of spatial correlation.

The following examples of stationarity were developed using the SAS tutorial data set. The data set has been rearranged, so
the resulting data for the figures presented here are not exactly the same as the figures that would be generated directly
from the SAS tutorial data set. On these figures, the concentration of a sampling point is noted by both the size of the dot
and its color. The red, orange, and yellow dots have higher concentrations, with red being the highest concentrations.

Strict stationarity YRead more

Strict stationarity assumes that all statistical properties, including the mean, variance, skewness, and kurtosis, remain
unchanged across the entire site with space or time. In the real world, this assumption means that the site or location is
homogeneous across the entire sampling area. Chiles and Delfiner (1999) compare strict stationarity to a jar of well-sorted
sand: the jar of sand is the sampling domain and the well-sorted sand represents homogeneity. Spatial data rarely meet the
assumption of strict stationarity in their raw form, but may after transformation or detrending, or both. Figure 8 illustrates
data that meet strict stationarity. A pure nugget effect, indicating a lack of spatial correlation, is illustrated in plan view in (a)
and demonstrated by the nearly horizontal line of semivariance (noted as gamma on the figure) verses distance in (b),
starting at a distance of zero.
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Figure 8. Data meeting strict stationarity.
Second-order stationarity YRead more

Second-order stationarity requires only that the mean and covariance do not change over space or time. Second-order
stationarity is also called “weak” stationarity. A random function is called second-order stationary when the mean and
variance are constant and the covariance or variogram depends only on lag distance and not on absolute positions. If the
distribution is normal (Gaussian), a second-order stationary random variable also meets strict stationarity. Figure

9 illustrates data that meet second-order stationarity. If a data set is second-order stationary, then intrinsic stationarity is
implied (see below); however, if the data are intrinsically stationary, they are not necessarily second-order stationary.
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Figure 9. Data meeting second-order stationarity.
Illustrated in plan view in (a), the concentrations at the sampling points, as noted by both the size of the dot and its color,
are not distributed uniformly. The change in concentration versus distance can be examined by investigating the covariance
(b) or semivariogram (c). The covariance model illustrates the joint variation between all the pairs of points. The
semivariogram is based on the absolute difference between the sample observations separated by the lag. If the mean is
constant and the covariance independent of location, then the covariance and semivariance are mirror-images of one
another as shown in the correlogram (d).

Intrinsic stationarity YRead more

Intrinsic stationarity assumes that for every vector (h), the linear increment of a variable is a stationary random function. In
other words, the mean and variogram do not change over space (or time). The variogram measures half the variance of the
differences in values measured between all possible observation points that are spaced a lag distance apart. A figure
illustrating intrinsically stationarity data would look similar to one illustrating non-stationary data (Figure 10). The only way
to distinguish between the two types would be to examine the local statistics of the data set.

The variogram of an intrinsically stationary dataset (that is not second-order stationary) does not exhibit a sill value.

The stationarity assumptions must be assessed to support the choice and use of advanced geospatial methods.
Nonstationary data sets VRead more

The simplest form of a nonstationary data set is characterized by a mean that exhibits a trend in space or time (Figure 10).
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Figure 10. Nonstationary data.

If the data show a trend, as illustrated in plan view in (a), then the semivariogram does not stabilize at a sill but rather
continues to climb (b). In this case, the concentration of the sample cannot be predicted based on lag distance.
Groundwater data sets, containing either concentrations or elevation values, often exhibit a trend or gradient, which is a
good example of a nonstationary mean. On the other hand, if groundwater data are collected for multiple years, then the
data typically demonstrates a seasonally repeating pattern which may have a mean that stabilizes.

The_Work Flow section includes discussion of spatial exploratory data analysis and developing the empirical variogram for a
data set. In addition, see the spatial correlation models for advanced geospatial methods section which discusses the
theoretical variogram models used to describe spatial correlation.
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