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More Complex Geospatial Methods

This section includes information on more complex geospatial methods such as parametric regression, splines and kernel
smoothing, nonparametric regression and multiple regression. These methods offer some potential advantages over the
simple methods because they allow predictions from the data and estimate the uncertainty of those predictions. The
assumptions, strengths, and weaknesses of each method are described, as well as guidance on using the method results. An
example at the end of this section illustrates how the results of these geospatial methods can be applied to address specific
optimization questions.

These methods can predict values for the variable of interest based on functions of the coordinates, but they work best
when additional explanatory variables are available. Explanatory variables can include almost any type of information that is
related to the quantity of interest, even data that are categorical (for example, soil type).

Methods based on splines and kernel smoothing are extremely flexible and can be used to accommodate physically
important features in mapping such as break lines and barriers. Spline methods can produce maps that account for
autocorrelation in a way that is equivalent to kriging (Wahba 1990). The main difference between splines and kriging is how
the degree of smoothing is estimated and how uncertainty estimates are provided. Nonparametric regression uses spline
and kernel smoothing methods within a regression framework.

Multiple regression allows the examination of the relationship between multiple variables associated with each point or unit
of observation (concentration, soil type). Any variable can be a function of any other variable measured on the same sample.
Multiple regression is a useful tool with which to examine relationship among the variables and to predict the value of one
variable based on the known values of the other variables. The regression example illustrates various regression
approaches.

Parametric Regression

Global parametric linear regression (which includes all the relevant data from the site) fits a simple polynomial function of
the data coordinates and possibly other explanatory variables. This approach is often called “trend surface analysis” when
fitting low-order polynomial functions of the coordinate variables. The surface generated by the polynomial changes
gradually and captures the large-scale (global) pattern in the data. Trend surface analysis on its own may be too simple to
create useful maps in most cases, but when it is combined with kriging it is a powerful method. The methods available for
combination include universal kriging, kriging with an external trend, and regression-kriging.

There are many available modifications to the traditional linear regression method that extend its flexibility and usefulness.
In particular, generalized linear models (GLMs) allow the modeling of non-normal distributions and accommodate a degree of
non-linearity in the model structure. These methods are not described in this guidance. An introduction to these methods is
provided by Dobson (2001), and the comprehensive reference is McCullagh and Nelder (1989).

Assumptions

Read more

Parametric regression analysis assumes the following:

= The error is a random variable with a mean of zero, conditional on the explanatory variables.

= The independent variables are measured with no error.

= The predictors are linearly independent; it is not possible to express any predictor as a linear combination of the
others.

= The error terms are uncorrelated, that is, the variance-covariance matrix of the error terms is diagonal and each
nonzero element is the variance of the error.

= The variance of the error is constant across observations (homoscedasticity).

Strengths and Weaknesses

Read more
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This method is a simple way to model large-scale trend and can include additional explanatory variables to improve
predictions. This method cannot be used to model complex surfaces unless additional explanatory variables are included
that explain most of the variation.

Understanding the Results

Read more
In the context of optimization, see how to use the results of the geospatial methods to address specific optimization
questions.

Splines and Kernel Smoothing

Spline and kernel smoothing methods represent a wide class of smoothing interpolation methods. One method of
interpolation is to fit a polynomial surface the measured data points, where a global polynomial encompasses the entire area
of interest, but may not contain sufficient detail to capture small scale variations. Local polynomials can be used to capture
small scale variation, but they may not apply universally. A piecewise polynomial fitting combines adjacent local polynomial
models into a patchwork model; the models can be generated using different polynomial functions but their boundaries must
line up for an even joining.

Aligning boundaries is accomplished through the use of splines, which describe how the joined model behaves at the
boundary between the different polynomial functions. Splines allow a smooth transition and a flexible interpolation surface.
A spline is a special type of piecewise polynomial, in which the smoothness of the interpolation is controlled by a smoothing
parameter. There are many different types of spline that behave similarly, including smoothing splines, regression splines,
and penalized splines. The smoothing factor controls the tradeoff between fitting the data exactly and the degree of
smoothness in the interpolation.

In contrast to spline smoothing, kernel smoothing is a type of moving average interpolation, in which the kernel function
provides the weight that each data point receives in the average. The degree of smoothing depends on the choice of kernel
function and kernel radius. Increasing the kernel radius results in a smoother interpolation as the moving average is
performed over a larger area. Kernel smoothing is also called local regression.

Splines and kernel smoothers are simple to use and are readily available in many software packages. Unlike advanced
spatial interpolation methods, such as kriging (Section 8.3), splines and kernel smoothers do not require estimation of a
statistical model of spatial correlation. For mapping as part of exploratory spatial data analysis, all that is needed is a list of
locations and values, as well as a smoothing factor or kernel function and radius. A smoothing factor of zero will produce an
interpolation spline that exactly interpolates the data. Larger smoothing factor values will smooth the spline to a greater
degree. Similarly, the kernel radius controls the smoothness of the kernel smoother. These smoothing parameters can be
chosen manually based on a visual appraisal of the resulting maps or through cross-validation.

Typical Applications

Read more

In addition to mapping, splines and kernel smoothers can also be used to help detect outliers, if the value at a known
sampling point is significantly different from the value of the interpolated value at that point.

Strengths and Weaknesses

Read more

Using splines and kernel methods to visualize general trends in data can be extremely useful as an extension of exploratory
spatial data analysis. These methods do not require the estimation of a statistical model of spatial correlation, and can
therefore be used early in the data analysis before more complex and computationally intensive methods, such as kriging,
are used. Smoothing methods can help in the development of a CSM, capture general trends in data, and detect outlying
data points. Another major strength is the flexibility to incorporate break lines and barriers into the interpolation.
Smoothing methods, however, should not be regarded as a replacement for more formal statistical methods. In particular,
the manual choice of smoothing parameter leads to some subjectivity in the resulting maps. Although the maps resulting
from splines and kernel methods may be similar to those from advanced methods such as kriging, in general smoothing
methods do not provide uncertainty estimates.
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Understanding the Results

VRead more
In the context of optimization, see how to use the results of the geospatial methods to address specific optimization
questions.

Nonparametric Regression

Nonparametric linear regression, also called local spatial regression, is a class of methods that use more flexible approaches
for modeling than simple global polynomials. The model structure is similar to linear regression, but it involves a sum of
smooth functions of the covariates. The smooth functions can be constructed from a wide variety of basis functions,
including splines and kernel smoothing methods. Spline methods are based on piecewise polynomial fitting, while kernel or
local regression methods are based on local polynomial fitting. All methods have parameters that control how smooth they
are, with the value of the smoothness parameter selected by iterative cross-validation.

Assumptions

VRead more

Same as parametric regression.

Strengths and Weaknesses

VRead more

This method is flexible and can model almost any surface. The method can include explanatory variables other than the
spatial coordinates to improve predictions. Few parameters must be estimated. Results can be very similar to kriging with
less effort, but the uncertainty estimates may not be as accurate.

Understanding the Results

VRead more
In the context of optimization, see how to use the results of the geospatial methods to address specific optimization
questions.

Regression Example

In the following example, a data set consisting of 155 samples of topsoil collected from the flood plain of the River Meuse
(located in the Netherlands) was analyzed. The samples were analyzed for heavy metals, but the focus of this example is on
interpolating zinc concentrations. Several of the methods presented in the EDA section and the parametric and
nonparametric regression sections are used in this example to illustrate the progression of analysis.

Spatial regression is appropriate here because several predictor variables are available. Figure 61 is a plot of the zinc
concentrations in parts per million (ppm), with the River Meuse shown in blue. The R Statistical Software was used in this
example, and the example data are provided with the sp R package (Pebesma and Bivand 2005).
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Figure 61. Plot of zinc concentrations in soil near River Meuse, The Netherlands.

Exploratory Data Analysis - River Meuse

VRead more
A basic exploratory data analysis is performed using a histogram (Figure 62). The histogram shows the zinc concentrations

are highly skewed. Any interpolation method will work better if it transforms the concentrations to make the data more
symmetric. A logarithmic (log) transformation is often used to transform concentrations, and so that approach is used here.
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Figure 62. Histograms of zinc concentrations.

The map shows that the zinc concentrations are spatially correlated. This conclusion can be confirmed by looking at the h-
scattergram in Figure 63, which shows on a scatter plot all pairs of data points having a specified range of separation
distances. The correlation coefficients are also shown on the plots. For example, the correlation between pairs of points less
than 80 m apart is 0.683. Up to a separation distance of approximately 500 m, there is still significant spatial correlation
between zinc concentrations. This correlation suggests that the spatial coordinates will make reasonable predictor variables
in the regression. The variogram shown in Figure 64 is another way to examine spatial correlation. In this case, the
variogram confirms that the range of spatial correlation is approximately 500 m. The horizontal dashed line is the variance
of the log of zinc concentrations (log zinc). The semivariance reaches the variance at approximately 500 m.
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Figure 63. H-scattergrams.
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Figure 64. Variogram.
The concentrations of zinc are higher near the river. Figure 65 shows that the relationship between log zinc concentrations



and distance to the river is nonlinear. By taking the square root of the distance, however, the relationship becomes
approximately linear. Figure 66 shows the log zinc concentrations as a function of the square root of the distance.
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Figure 65. Relationship between log zinc concentration and distance to the river.
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Figure 66. Log zinc concentrations as a function of the square root of the distance.

The other available covariates (or predictor variables) for this site are soil type and flood frequency. Three soil types have
been identified throughout the area of interest (Figure 67). As shown in Figure 68, the boxplot, type 1 soil is associated with
higher zinc concentrations than the other types. An alternative to the box plot is a density plot. The density plot in Figure 69
shows that type 3 soil is associated with a wide range of log zinc concentrations, so this soil type may not contribute much
to prediction accuracy. Flood frequency is shown in Figure 70, and the flood frequency class box plot in Figure 71. Flood
frequency has also been categorized into three classes, with class 1 (closest to the river) representing the locations that
flood most frequently.
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Figure 67. Soil type map.
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Figure 69. Soil type probability density plot showing the frequency of zinc concentrations for each soil type.



Flood Frequency

Figure 70. Flood frequency class 1 (closest to the river) representing the locations that flood most frequently.
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Figure 71. Flood frequency class box plots.

Parametric Regression - River Meuse

VRead more

A simple parametric linear regression model predicts zinc concentrations from the three predictor variables available: soil
type, flood frequency, and distance to the river. The model diagnostic output from the R package mgcv is shown below. The
fit is reasonably good, with an R-squared value of 66%, meaning that the model can predict approximately 66% of the
variation in the data. The generalized cross validation (GCV) score is 0.163. Comparing this score to the GCV score for an
alternative model determines which model is better. Figure 72 includes the diagnostic plots which show that the
assumptions of linear regression are approximately satisfied.

Diagnostic Output from the R Package mgcv

##

## Family: Gamma

#4# Link function: log

##

## Formula:

#4# zinc ~ soil + sqrt(dist) + ffreq
##

## Parametric coefficients:

#4# Estimate Std. Error t value Pr(>|t|)

#4# (Intercept) 7.06916 0.07571 93.376 < 2e-16 ***
#4# 50il2 -0.37666 0.09493 -3.968 0.000112 ***

## s0il3 -0.23286 0.14926 -1.560 0.120854

#4# sqrt(dist) -1.75893 0.20808 -8.453 2.39e-14 ***
#4# ffreq2 -0.46702 0.08726 -5.352 3.22e-07 ***
## ffreq3 -0.46302 0.10744 -4.310 2.96e-05 ***
##—

#4# Signif. codes: 0 “***' 0.001 “**' 0.01 ** 0.05°‘." 0.1 ‘1
##

##



## R-sq.(adj) = 0.658 Deviance explained = 71.7%
## GCV = 0.16301 Scale est. = 0.17469 n = 155

Normal Q-Q Plot

1.0

residuals

deviance residuals
0.0

-1.0

theoretical quantiles

Histogram of residuals

25

10
Response

Frequency

-1.0 -0.5 0.0 0.5 1.0

Residuals

1.0

0.0

-1.0

1500

500

Resids vs. linear pred.

(] & [ a]
o o o o
Dg“?‘ Gé’au E§n °e g:
B g0 " S P0
86 ogfiEieen® S5 ok
E'Dgu ool
[e]

linear predictor

Response vs. Fitted Values

200 400 600 800 1000 1200

Fitted Values

Figure 72. Diagnostic plots.

Nonparametric Regression - River Meuse

VRead more

Nonparametric regression captures the remaining spatial structure by using a thin-plate regression spline, one of many kinds
of splines and kernel methods that could be used. Once the spline is added to the existing model, the R-squared rises to
82%, which is considered good. The GCV score is also significantly lower (0.115). Figure 73 and Figure 74 include the

predicted zinc concentrations and associated error.

Diagnostic Output from the R package

##

## Family: Gamma

#4# Link function: log

##

## Formula:

## zinc ~ s(x, y, bs = “ts”, k = 100) + s(sqrt(dist)) + soil + ffreq
##

#4# Parametric coefficients:

## Estimate Std. Error t value Pr(>|t|)

#4# (Intercept) 6.26383 0.05608 111.699 < 2e-16 ***
#4# s0il2 -0.11421 0.10748 -1.063 0.2900

#4# s0il3-0.30312 0.15727 -1.927 0.0561.

## ffreq2 -0.62153 0.07155 -8.687 1.43e-14 ***

## ffreq3 -0.63759 0.10922 -5.837 4.05e-08 ***
##—



## Signif. codes: 0 ¥+ 0.001 **' 0.01 *" 0.05°." 0.1 ‘1
##

## Approximate significance of smooth terms:

#4# edf Ref.df F p-value

## s(x,y) 17.261 99.000 1.035 2.69e-14 ***

## s(sqrt(dist)) 3.721 4.572 12.387 2.48e-09 ***

## —

## Signif. codes: 0 "+ 0,001 “**' 0.01 *" 0.05‘." 0.1 ‘1
##

#4# R-sq.(adj) = 0.818 Deviance explained = 87.4%

## GCV = 0.11476 Scale est. = 0.082056 n = 155

Figure 73. Predicted zinc concentrations.



Figure 74. Prediction standard error.

If the residuals of the nonparametric model are evaluated using an h-scatterplot (see Figure 75), it becomes clear that they
have no remaining spatial correlation. Thus, the model has combined the information from the predictor variables and the
spatial correlation.

The model output (predictions and prediction standard error) can now be used for optimization. For example, the output
could be used to determine where additional sampling would be most beneficial to reducing uncertainty about the extent of
elevated concentrations. The map of predictions shows that the highest concentrations are located along the river shoreline.
The map of prediction standard errors shows that within the area of higher concentrations the highest levels of uncertainty
are located in the southwest corner of the map at the bend in the river. These areas with the highest uncertainty (highest
standard error) should be targeted for additional sampling. Conversely, if resampling of the entire area was planned, the
prediction standard errors could be used to indicate areas of low uncertainty where less dense sampling might be
appropriate.
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Figure 75. Residuals of the nonparametric model.



