

Printed from: Interstate Technology & Regulatory Council (ITRC). 2016. *Geospatial Analysis for Optimization at Environmental Sites (GRO-1)*. Washington, D.C.: Interstate Technology & Regulatory Council, Geostatistics for Remediation Optimization Team. www.itrcweb.org/gro-1.

Case Studies

This section includes case studies that use different geospatial methods and software packages to optimize project life cycle activities. These case studies demonstrate the usefulness of geospatial methods and the particular abilities of some common software packages. The case studies were chosen for their applicability to groundwater, soil, and sediment and for the variety of software applications that they present.

These case studies were performed for purposes other than this guidance document, were completed prior to the preparation of this document, and were done in context with individual project parameters and constraints. These real-world examples show how the software can be used to solve real problems, with limitations of time, resources, and specific project needs.

Case study/location	Life cycle stage	Environmental medium	Methods	Software used	Contaminants	Applicable questions
<u>Superfund</u> <u>Site, TX</u>	Monitoring	Groundwater	• Mann Kendall • Voronoi/Delaunay mesh	MAROS	VOCs, 1-2- DCA, Benzene, Metals	 Trend Maps Monitoring Program Optimization
<u>PAH in</u> <u>Sediments,</u> <u>Quebec,</u> <u>Canada</u>	Site Characterization	Sediment	 Experimental variogram Uncertainty Conditional Simulations Isatis 	Isatis	PAHs	 Hot Spot Detection Sample Spacing Estimating Quantities
<u>Ordnance</u> <u>Plant, NE</u>	Monitoring, Closure	Groundwater	 Kriging Iterative Thinning Quasi-genetic optimization 	GTS Summit Envirosolutions	TCE, Research Department Explosives (RDX)	 Monitoring Program Optimization Remedial Program Optimization
<u>Smelter, IL</u>	Site Characterization, Remediation	Soil	 Inverse Distance Weighting (IDW) Kriging Volumetric estimation 	Environmental Visualization System (EVS) Mining Visualization System (MVS) Earth Volumetric Studio EnterVol	Lead, cadmium, mercury	 Interpolation Estimating Quantities Remedial Action Optimization
<u>Nuclear Plant,</u> <u>Fukushima,</u> J <u>apan</u>	Site Characterization, Remediation	Soil	• IDW • Kriging	ArcGIS Spatial Analyst ArcGIS Geostatistical Analyst	Cesium-137	 Estimating Quantities Hot Spot Detection Interpolation Estimating Average Concentrations

Table 10. Summary of case studies

<u>Research</u> <u>Facility, NJ</u>	Monitoring	Groundwater	 Mann-Kendall Nonparametric statistics Penalized splines Voronoi/Delaunay mesh 	GWSDAT	BTEX, MTBE	 Trend Maps Quantifying Uncertainty Plume Change/Attenuation Over Time
<u>Tidal Site, NJ</u>	Site Characterization	Sediment estuary	• EDA • Variography • Point/block kriging	ArcGIS	PCB, Aroclors	 Sample Spacing Estimating Concentrations Based on Proxy Data Estimating Quantities
<u>Superfund</u> Site, CA	Monitoring	Groundwater	 Mann-Kendall Parametric linear regression Voronoi/Delaunay mesh Cost Effective Sampling algorithm 	MAROS	Perchlorate, TCE, Chloroform	• Monitoring Program Optimization
<u>Lead in Soil,</u> <u>GA</u>	Site Characterization	Soil	 Point/Block Kriging Exploratory Variography 	ArcGIS	Lead	 Hotspot Detection Estimating Average Concentrations Remedial Action Optimization